JEDNOSTKA NAUKOWA KATEGORII A+

Generating varieties for the triple loop space of classical Lie groups

Tom 177 / 2003

Yasuhiko Kamiyama Fundamenta Mathematicae 177 (2003), 269-283 MSC: Primary 58D27; Secondary 53C07, 55R40. DOI: 10.4064/fm177-3-6

Streszczenie

For $G= SU(n), Sp(n)$ or $\mathop {\rm Spin}\nolimits (n)$, let $C_G (SU(2))$ be the centralizer of a certain $SU(2)$ in $G$. We have a natural map $J: G/C_G (SU(2)) \rightarrow {\mit \Omega }_0^3 G$. For a generator $\alpha $ of $H_\ast (G/C_G (SU(2)); {{\mathbb Z}}/2)$, we describe $J_\ast (\alpha )$. In particular, it is proved that $J_\ast : H_\ast (G/C_G (SU(2)); {{\mathbb Z}}/2) \rightarrow H_\ast ({\mit \Omega }_0^3G;{{\mathbb Z}}/2)$ is injective.

Autorzy

  • Yasuhiko KamiyamaDepartment of Mathematics
    University of the Ryukyus
    Okinawa 903-0213, Japan
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek