Injective comodules and Landweber exact homology theories
Tom 196 / 2007
Fundamenta Mathematicae 196 (2007), 237-251
MSC: 55N22, 55S25, 13C11, 16W30.
DOI: 10.4064/fm196-3-2
Streszczenie
We classify the indecomposable injective $E(n)_{*}E(n)$-comodules, where $E(n)$ is the Johnson–Wilson homology theory. They are suspensions of the $J_{n,r}= E(n)_{*}(M_{r}E(r))$, where $0\leq r\leq n$, with the endomorphism ring of $J_{n,r}$ being $\widehat{E(r)}^{*}\widehat{E(r)}$, where $\widehat{E(r)}$ denotes the completion of~$E(r)$.