Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

JEDNOSTKA NAUKOWA KATEGORII A+

Whitney arcs and 1-critical arcs

Tom 199 / 2008

Marianna Csörnyei, Jan Kališ, Luděk Zajíček Fundamenta Mathematicae 199 (2008), 119-130 MSC: Primary 26B05; Secondary 26A30. DOI: 10.4064/fm199-2-2

Streszczenie

A simple arc is called a Whitney arc if there exists a non-constant real function f on \gamma such that \lim_{y\to x,\, y\in \gamma}{{|f(y)-f(x) |}/{|y-x|}}=0 for every x\in \gamma; \gamma is 1-critical if there exists an f \in C^1(\mathbb R^n) such that f'(x)=0 for every x \in \gamma and f is not constant on \gamma. We show that the two notions are equivalent if \gamma is a quasiarc, but for general simple arcs the Whitney property is weaker. Our example also gives an arc \gamma in \mathbb R^2 each of whose subarcs is a monotone Whitney arc, but which is not a strictly monotone Whitney arc. This answers completely a problem of G. Petruska which was solved for n\geq 3 by the first author in 1999.

Autorzy

  • Marianna CsörnyeiDepartment of Mathematics
    University College London
    Gower Street, London
    WC1E 6BT, United Kingdom
    e-mail
  • Jan KališDepartment of Mathematical Sciences
    Florida Atlantic University
    777 Glades Road
    Boca Raton, FL 33431, U.S.A.
    e-mail
  • Luděk ZajíčekDepartment of Mathematical Analysis
    Charles University
    Sokolovská 83
    186 75 Praha 8, Czech Republic
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek