Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

JEDNOSTKA NAUKOWA KATEGORII A+

Generalized -variation and Lebesgue equivalence to differentiable functions

Tom 205 / 2009

Jakub Duda Fundamenta Mathematicae 205 (2009), 191-217 MSC: Primary 26A24; Secondary 26A45. DOI: 10.4064/fm205-3-1

Streszczenie

We find conditions on a real function f:[a,b]\to\mathbb R equivalent to being Lebesgue equivalent to an n-times differentiable function (n\geq 2); a simple solution in the case n=2 appeared in an earlier paper. For that purpose, we introduce the notions of CBVG_{1/n} and SBVG_{1/n} functions, which play analogous rôles for the nth order differentiability to the classical notion of a VBG_* function for the first order differentiability, and the classes CBV_{1/n} and SBV_{{1}/{n}} (introduced by Preiss and Laczkovich) for C^n smoothness. As a consequence, we deduce that Lebesgue equivalence to an n-times differentiable function is the same as Lebesgue equivalence to a function f which is (n-1)-times differentiable with f^{(n-1)}(\cdot) pointwise Lipschitz. We also characterize functions that are Lebesgue equivalent to n-times differentiable functions with a.e. nonzero derivatives. As a corollary, we establish a generalization of Zahorski's Lemma for higher order differentiability.

Autorzy

  • Jakub DudaDepartment of Mathematics
    Weizmann Institute of Science
    Rehovot 76100, Israel
    and
    PIRA Energy Group
    3 Park Ave FL 26
    New York, NY 10016, U.S.A.
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek