JEDNOSTKA NAUKOWA KATEGORII A+

Extending the Dehn quandle to shears and foliations on the torus

Tom 225 / 2014

Reza Chamanara, Jun Hu, Joel Zablow Fundamenta Mathematicae 225 (2014), 1-22 MSC: 57Mxx, 17Dxx. DOI: 10.4064/fm225-1-1

Streszczenie

The Dehn quandle, $Q$, of a surface was defined via the action of Dehn twists about circles on the surface upon other circles. On the torus, $\mathbb {T}^2$, we generalize this to show the existence of a quandle $\hat Q$ extending $Q$ and whose elements are measured geodesic foliations. The quandle action in $\hat Q$ is given by applying a shear along such a foliation to another foliation. We extend some results which related Dehn quandle homology to the monodromy of Lefschetz fibrations. We apply certain quandle 2-cycles to yield factorizations of elements of $\mathop {\rm SL}_2(\mathbb {R})$ fixing specified vectors (circles, foliations) and give examples. Using these, we show the quandle homology of $\hat Q$ is nontrivial in all dimensions.

Autorzy

  • Reza ChamanaraDepartment of Mathematics
    Brooklyn College
    Brooklyn, NY 11210, U.S.A.
    e-mail
  • Jun HuDepartment of Mathematics
    Brooklyn College
    Brooklyn, NY 11210, U.S.A.
    and
    Ph.D. Program in Mathematics
    Graduate Center, CUNY
    365 5th Ave.
    New York, NY 10016, U.S.A.
    e-mail
  • Joel ZablowDepartment of Mathematics
    Long Island University, Brooklyn Campus
    1 University Plaza
    Brooklyn, NY 11201, U.S.A.
    e-mail
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek