JEDNOSTKA NAUKOWA KATEGORII A+

Some pinching deformations of the Fatou function

Tom 228 / 2015

Patricia Domínguez, Guillermo Sienra Fundamenta Mathematicae 228 (2015), 1-15 MSC: Primary 37F10; Secondary 37D05. DOI: 10.4064/fm228-1-1

Streszczenie

We are interested in deformations of Baker domains by a pinching process in curves. In this paper we deform the Fatou function $F(z)=z+1+e^{-z}$, depending on the curves selected, to any map of the form $F_{p/q} (z)=z+e^{-z}+2{\pi }ip/q$, $p/q$ a rational number. This process deforms a function with a doubly parabolic Baker domain into a function with an infinite number of doubly parabolic periodic Baker domains if $p=0$, otherwise to a function with wandering domains. Finally, we show that certain attracting domains can be deformed by a pinching process into doubly parabolic Baker domains.

Autorzy

  • Patricia DomínguezFacultad de Ciencias Físico Matemáticas
    Benemérita Universidad Autónoma de Puebla
    Puebla, Mexico
    e-mail
  • Guillermo SienraDepartamento de Matemáticas
    Facultad de Ciencias
    UNAM
    México, D.F., Mexico
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek