Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

JEDNOSTKA NAUKOWA KATEGORII A+

Regular spaces of small extent are -resolvable

Tom 228 / 2015

István Juhász, Lajos Soukup, Zoltán Szentmiklóssy Fundamenta Mathematicae 228 (2015), 27-46 MSC: 54A35, 03E35, 54A25. DOI: 10.4064/fm228-1-3

Streszczenie

We improve some results of Pavlov and Filatova, concerning a problem of Malykhin, by showing that every regular space X that satisfies \varDelta (X)>\operatorname {\rm e}(X) is {\omega }-resolvable. Here \varDelta (X), the dispersion character of X, is the smallest size of a non-empty open set in X, and \operatorname {\rm e}(X), the extent of X, is the supremum of the sizes of all closed-and-discrete subsets of X. In particular, regular Lindelöf spaces of uncountable dispersion character are {\omega }-resolvable.

We also prove that any regular Lindelöf space X with |X|=\varDelta (X)=\omega _1 is even {\omega _1}-resolvable. The question whether regular Lindelöf spaces of uncountable dispersion character are maximally resolvable remains wide open.

Autorzy

  • István JuhászAlfréd Rényi Institute of Mathematics
    Hungarian Academy of Sciences
    13–15 Reáltanoda u.
    1053 Budapest, Hungary
    e-mail
  • Lajos SoukupAlfréd Rényi Institute of Mathematics
    Hungarian Academy of Sciences
    13–15 Reáltanoda u.
    1053 Budapest, Hungary
    e-mail
  • Zoltán SzentmiklóssyInstitute of Mathematics
    Faculty of Science
    Eötvös Loránd University
    Pázmány Péter sétány 1/C
    1117 Budapest, Hungary
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek