Jumps of entropy for interval maps
Tom 231 / 2015
Fundamenta Mathematicae 231 (2015), 299-317
MSC: 37A35, 37C05, 37B10, 37B40.
DOI: 10.4064/fm231-3-5
Streszczenie
We study the jumps of topological entropy for C^r interval or circle maps. We prove in particular that the topological entropy is continuous at any f\in C^r([0,1]) with h_{\rm top}(f)>\frac{\log^+\|f'\|_\infty}{r}. To this end we study the continuity of the entropy of the Buzzi–Hofbauer diagrams associated to C^r interval maps.