JEDNOSTKA NAUKOWA KATEGORII A+

Infinite games and chain conditions

Tom 234 / 2016

Santi Spadaro Fundamenta Mathematicae 234 (2016), 229-239 MSC: Primary 54A25, 91A44; Secondary 54F05, 54G10. DOI: 10.4064/fm232-3-2016 Opublikowany online: 23 May 2016

Streszczenie

We apply the theory of infinite two-person games to two well-known problems in topology: Suslin’s Problem and Arhangel’skii’s problem on the weak Lindelöf number of the $G_\delta $ topology on a compact space. More specifically, we prove results of which the following two are special cases: 1) every linearly ordered topological space satisfying the game-theoretic version of the countable chain condition is separable, and 2) in every compact space satisfying the game-theoretic version of the weak Lindelöf property, every cover by $G_\delta $ sets has a continuum-sized subcollection whose union is $G_\delta $-dense.

Autorzy

  • Santi SpadaroInstituto de Matemática e Estatística (IME-USP)
    Universidade de São Paulo
    Rua do Matão, 1010 – Cidade Universitária
    05508-090 São Paulo – SP, Brazil
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek