JEDNOSTKA NAUKOWA KATEGORII A+

Borel complexity and potential canonical Scott sentences

Tom 239 / 2017

Douglas Ulrich, Richard Rast, Michael C. Laskowski Fundamenta Mathematicae 239 (2017), 101-147 MSC: Primary 03C15, 03E15; Secondary 03C45, 03C55. DOI: 10.4064/fm326-11-2016 Opublikowany online: 31 March 2017

Streszczenie

We define and investigate HC-forcing invariant formulas of set theory, whose interpretations in the hereditarily countable sets are well-behaved under forcing extensions. This leads naturally to a notion of cardinality $\|\varPhi\|$ for sentences $\varPhi$ of $L_{\omega_1\omega}$ which counts the number of sentences of $L_{\infty\omega}$ that, in some forcing extension, become a canonical Scott sentence of a model of $\varPhi$. We show this cardinal bounds the complexity of $(\operatorname{Mod}(\varPhi), {\cong})$, the class of models of $\varPhi$ with universe $\omega$, by proving that $(\operatorname{Mod}(\varPhi),{\cong})$ is not Borel reducible to $(\operatorname{Mod}(\varPsi),{\cong})$ whenever $\|\varPsi\| \lt \|\varPhi\|$. Using these tools, we analyze the complexity of the class of countable models of four complete, first order theories $T$ for which $(\operatorname{Mod}(T),{\cong})$ is properly analytic, yet admit very different behavior. We prove that both “binary splitting, refining equivalence relations” and Koerwien’s example (2011) of an eni-depth 2, $\omega$-stable theory have $(\operatorname{Mod}(T),{\cong})$ non-Borel, yet neither is Borel complete. We give a slight modification of Koerwien’s example that is also $\omega$-stable, eni-depth 2, but is Borel complete. Additionally, we prove that $I_{\infty\omega}(\varPhi) \lt \beth_{\omega_1}$ whenever $(\operatorname{Mod}(\varPhi),{\cong})$ is Borel.

Autorzy

  • Douglas UlrichDepartment of Mathematics
    University of Maryland
    College Park, MD 20742, U.S.A.
  • Richard RastDepartment of Mathematics
    University of Maryland
    College Park, MD 20742, U.S.A.
    e-mail
  • Michael C. LaskowskiDepartment of Mathematics
    University of Maryland
    College Park, MD 20742, U.S.A.

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek