JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Minimal obstructions for normal spanning trees

Tom 241 / 2018

Nathan Bowler, Stefan Geschke, Max Pitz Fundamenta Mathematicae 241 (2018), 245-263 MSC: Primary 05C63, 05C75; Secondary 03E05, 03E50. DOI: 10.4064/fm337-10-2017 Opublikowany online: 16 February 2018

Streszczenie

Diestel and Leader have characterised connected graphs that admit a normal spanning tree via two classes of forbidden minors. One class is Halin’s $(\aleph _0,\aleph _1)$-graphs: bipartite graphs with bipartition $(A,B)$ such that $| A | = \aleph _0$, $| B| = \aleph _1$ and every vertex of $B$ has infinite degree.

Our main result is that under Martin’s Axiom and the failure of the Continuum Hypothesis, the class of forbidden $(\aleph _0,\aleph _1)$-graphs in Diestel and Leader’s result can be replaced by one single instance of such a graph.

Under CH, however, the class of $(\aleph _0,\aleph _1)$-graphs contains minor-incomparable elements, namely graphs of binary type, and $\mathcal {U}$-indivisible graphs. Assuming CH, Diestel and Leader asked whether every $(\aleph _0,\aleph _1)$-graph has an $(\aleph _0,\aleph _1)$-minor that is either indivisible or of binary type, and whether any two $\mathcal {U}$-indivisible graphs are necessarily minors of each other. For both questions, we construct examples showing that the answer is in the negative.

Autorzy

  • Nathan BowlerDepartment of Mathematics
    University of Hamburg
    Bundesstraße 55
    20146 Hamburg, Germany
    e-mail
  • Stefan GeschkeDepartment of Mathematics
    University of Hamburg
    Bundesstraße 55
    20146 Hamburg, Germany
    e-mail
  • Max PitzDepartment of Mathematics
    University of Hamburg
    Bundesstraße 55
    20146 Hamburg, Germany
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek