JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

SSGP topologies on abelian groups of positive finite divisible rank

Tom 244 / 2019

Dmitri Shakhmatov, Víctor Hugo Yañez Fundamenta Mathematicae 244 (2019), 125-145 MSC: Primary 22A05; Secondary 03E99, 06A06, 20K27, 54E35, 54H11. DOI: 10.4064/fm463-3-2018 Opublikowany online: 27 September 2018

Streszczenie

For a subset $A$ of a group $G$, we denote by $\def\grp#1{\langle{#1}\rangle}\grp{A}$ the smallest subgroup of $G$ containing $A$ and let $\def\Cyc{\mathrm{Cyc}}\Cyc(A)=\{x\in G: \def\grp#1{\langle{#1}\rangle}\grp{\{x\}}\subseteq A\}$. A topological group $G$ is SSGP if $\def\grp#1{\langle{#1}\rangle}\grp{\def\Cyc{\mathrm{Cyc}}\Cyc(U)}$ is dense in $G$ for every neighbourhood $U$ of the identity of $G$. The SSGP groups form a proper subclass of the class of minimally almost periodic groups.

Comfort and Gould asked about a characterization of abelian groups which admit an SSGP group topology. An “almost complete” characterization was found by Dikranjan and the first author. The remaining case is resolved here. As a corollary, we give a positive answer to another question of Comfort and Gould by showing that if an abelian group admits an SSGP($n$) group topology for some positive integer $n$, then it admits an SSGP group topology as well.

Autorzy

  • Dmitri ShakhmatovDivision of Mathematics, Physics
    and Earth Sciences
    Graduate School of Science
    and Engineering
    Ehime University
    Matsuyama 790-8577, Japan
    e-mail
  • Víctor Hugo YañezDoctor’s Course
    Graduate School of Science
    and Engineering
    Ehime University
    Matsuyama 790-8577, Japan
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek