Symmetric Lie models of a triangle
Urtzi Buijs, Yves Félix, Aniceto Murillo, Daniel Tanré
Fundamenta Mathematicae 246 (2019), 289-300
MSC: Primary 55P62; Secondary 17B01, 55U10.
DOI: 10.4064/fm518-7-2018
Opublikowany online: 15 February 2019
Streszczenie
R. Lawrence and D. Sullivan have constructed a Lie model for an interval from the geometrical idea of flat connections and flows of gauge transformations. Their model supports an action of the symmetric group $\varSigma _2$ reflecting the geometrical symmetry of the interval. In this work, we present a Lie model of the triangle with an action of the symmetric group $\varSigma _3$ compatible with the geometrical symmetries of the triangle. We also prove that the model of a graph consisting of a circuit with $k$ vertices admits a Maurer–Cartan element stable by the automorphisms of the graph.
Autorzy
- Urtzi BuijsDepartamento de Álgebra, Geometría y Topología
Universidad de Málaga
Ap. 59
29080 Málaga, Spain
e-mail
- Yves FélixInstitut de Mathématiques et Physique
Université Catholique de Louvain-la-Neuve
Louvain-la-Neuve, Belgium
e-mail
- Aniceto MurilloDepartamento de Álgebra, Geometría y Topología
Universidad de Málaga
Ap. 59, 29080-Málaga, Spain
e-mail
- Daniel TanréDépartement de Mathématiques, UMR 8524
Université de Lille 1
59655 Villeneuve d’Ascq Cedex, France
e-mail