Zawartość tomu 248
-
A Mitchell-like order for Ramsey and Ramsey-like cardinals Fundamenta Mathematicae 248 (2020), 1-32 MSC: Primary 03E55. DOI: 10.4064/fm701-3-2019
-
Sacks forcing and the shrink wrapping property Fundamenta Mathematicae 248 (2020), 33-47 MSC: 03E05, 03E35, 03E40. DOI: 10.4064/fm688-2-2019
-
$L_p$ regular sparse hypergraphs: box norms Fundamenta Mathematicae 248 (2020), 49-77 MSC: Primary 05C35, 05C65; Secondary 46B20, 46B25. DOI: 10.4064/fm656-10-2018
-
Realizing spaces as path-component spaces Fundamenta Mathematicae 248 (2020), 79-89 MSC: Primary 55Q52, 58B05, 54B15; Secondary 22A05, 54C10, 54G15. DOI: 10.4064/fm529-12-2018
-
Polishability of some groups of interval and circle diffeomorphisms Fundamenta Mathematicae 248 (2020), 91-109 MSC: 22A05, 26A45, 26A46. DOI: 10.4064/fm605-1-2019
-
A $\kappa $-rough morass under $2^{{<}\kappa }=\kappa $ and various applications Fundamenta Mathematicae 248 (2020), 111-133 MSC: Primary 03C30, 03E30, 03E35, 03E45, 03E55, 03E75; Secondary 03C55, 03D60, 03E65. DOI: 10.4064/fm387-4-2019
-
No minimal tall Borel ideal in the Katětov order Fundamenta Mathematicae 248 (2020), 135-145 MSC: 03E05, 03E15, 03E17. DOI: 10.4064/fm724-4-2019
-
A Ramsey theorem for pairs in trees Fundamenta Mathematicae 248 (2020), 147-193 MSC: Primary 05D10; Secondary 05C55. DOI: 10.4064/fm740-5-2019
-
Nontrivial twisted sums for finite height spaces under Martin’s Axiom Fundamenta Mathematicae 248 (2020), 195-204 MSC: Primary 46E15, 54G12; Secondary 54D40. DOI: 10.4064/fm609-2-2019
-
Idempotents in $\beta G\setminus G$ with only trivial divisors Fundamenta Mathematicae 248 (2020), 205-218 MSC: Primary 22A15, 54H11; Secondary 22A30, 54H20. DOI: 10.4064/fm696-2-2019
-
Trihedral Soergel bimodules Fundamenta Mathematicae 248 (2020), 219-300 MSC: Primary 20C08; Secondary 17B10, 18D05, 18D10, 20F55. DOI: 10.4064/fm566-3-2019
-
Automorphism groups of countable stable structures Fundamenta Mathematicae 248 (2020), 301-307 MSC: 03C45, 03E15, 22F50. DOI: 10.4064/fm723-4-2019
-
Connected neighborhoods in Cartesian products of solenoids Fundamenta Mathematicae 248 (2020), 309-320 MSC: Primary 54F15; Secondary 54F50. DOI: 10.4064/fm678-3-2019