Connected neighborhoods in Cartesian products of solenoids
Jan P. Boroński, Alejandro Illanes, Emanuel R. Márquez
Fundamenta Mathematicae 248 (2020), 309-320
MSC: Primary 54F15; Secondary 54F50.
DOI: 10.4064/fm678-3-2019
Opublikowany online: 7 August 2019
Streszczenie
Given a collection of pairwise co-prime integers , we consider the product \Sigma =\Sigma _{m_{1}}\times \cdots \times \Sigma _{m_{r}}, where each \Sigma _{m_{i}} is the m_{i}-adic solenoid. Answering a question of D. P. Bellamy and J. M. Łysko, we prove that if M is a subcontinuum of \Sigma such that the projections of M on each \Sigma _{m_{i}} are onto, then for each open subset U in \Sigma with M\subset U, there exists an open connected subset V of \Sigma such that M\subset V\subset U, i.e. any such M is ample in the sense of Prajs and Whittington (2007). This contrasts with the property of Cartesian squares of fixed solenoids \Sigma _{m_{i}}\times \Sigma _{m_{i}}, whose diagonals are never ample (Bellamy and Łysko, 2014).
Autorzy
- Jan P. BorońskiNational Supercomputing Centre IT4Innovations
Division of the University of Ostrava
Institute for Research and Applications
of Fuzzy Modeling
30. Dubna 22
701 03 Ostrava, Czech Republic
and Faculty of Applied Mathematics
AGH University of Science and Technology
Al. Mickiewicza 30
30-059 Kraków, Poland
e-mail
- Alejandro IllanesInstituto de Matemáticas
Universidad Nacional Autónoma
de México
Circuito Exterior, Cd. Universitaria
México, D.F., 04510, México
e-mail
- Emanuel R. MárquezDepartamento de Matemáticas
Facultad de Ciencias
Universidad Nacional Autónoma de México
Circuito Exterior, Cd. Universitaria
México, D.F., 04510, México
e-mail