JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Some new results about the ubiquitous semigroup $\mathbb H$

Tom 251 / 2020

Neil Hindman, Dona Strauss Fundamenta Mathematicae 251 (2020), 87-108 MSC: Primary 22A15; Secondary 54D80. DOI: 10.4064/fm812-1-2020 Opublikowany online: 9 March 2020

Streszczenie

The semigroup $\mathbb {H}$ is defined as $\bigcap _{n=1}^\infty c\ell _{\beta \mathbb {N}}(2^n\mathbb {N})$, and it has the algebraic structure (and topology) inherited from the right topological semigroup $(\beta \mathbb {N},+)$. Topological and algebraic copies of $\mathbb {H}$ are found in $(\beta S,\cdot )$ for any discrete semigroup $S$ which has some sequence with distinct finite products. And any compact Hausdorff right topological semigroup which has a countable dense set contained in its topological center is an image of $\mathbb {H}$ under a continuous homomorphism. (Thus the term “ubiquitous” in the title.) Much is already known about the structure of $\mathbb {H}$. In this paper we present several new results. Included are the following facts. (1) For any $n\in \mathbb {N}$, $\mathbb {H}$ is the union of $n$ pairwise disjoint clopen copies of itself, each of which is a right ideal of $\mathbb {H}$, and $\mathbb {H}$ is the union of $n$ pairwise disjoint clopen copies of itself, each of which is a left ideal of $\mathbb {H}$. (2) $\mathbb {H}$ contains $\mathfrak c $ pairwise disjoint clopen copies of itself, each of which is a right ideal of $\mathbb {H}$, and $\mathbb {H}$ contains $\mathfrak c$ pairwise disjoint clopen copies of itself, each of which is a left ideal of $\mathbb {H}$. (3) If $S$ is a countable dense subgroup of $(\mathbb {R},+)$ and $S_d$ is $S$ with the discrete topology, then the set of ultrafilters in $\beta S_d$ that converge to $0$ (in the usual topology on $S$) is a copy of $\mathbb {H}$. (4) If $S$ is the direct sum of countably many countable partial semigroups each of which has an identity and at least two elements, then the set of ultrafilters in $\beta S_d$ that converge to the identity in the product topology on $S$ is a copy of $\mathbb {H}$.

Autorzy

  • Neil HindmanDepartment of Mathematics
    Howard University
    Washington, DC 20059, U.S.A.
    e-mail
  • Dona StraussDepartment of Pure Mathematics
    University of Leeds
    Leeds LS2 9J2, UK
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek