JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Borel chromatic numbers of graphs of commuting functions

Tom 253 / 2021

Connor Meehan, Konstantinos Palamourdas Fundamenta Mathematicae 253 (2021), 219-237 MSC: Primary 03E15; Secondary 05C15. DOI: 10.4064/fm577-5-2020 Opublikowany online: 23 October 2020

Streszczenie

Let $\mathbf{D} = (X, D)$ be a Borel directed graph on a standard Borel space $X$ and let $\chi _B(\mathbf{D})$ be its Borel chromatic number. If $F_0, \ldots , F_{n-1}: X \to X$ are Borel functions, let $\mathbf{D}_{F_0, \ldots, F_{n-1}} $ be the directed graph that they generate. It is an open problem if $\chi _B(\mathbf{D}_{F_0, \ldots, F_{n-1}} ) \in \{1, \ldots , 2n + 1, \aleph _0\}$. This was verified for commuting functions with no fixed points. We show here that for commuting functions with the properties that $\chi _B(\mathbf{D}_{F_0, \ldots, F_{n-1}} ) \lt \aleph _0$ and that there is a path from each $x \in X$ to a fixed point of some $F_j$, there exists an increasing filtration $\{X_m\}_{m \lt \omega }$ with $X = \bigcup _{m \lt \omega } X_m$ such that $\chi _B(\mathbf{D}_{F_0, \ldots, F_{n-1}} {\restriction} X_m) \le 2n$ for each $m$. We also prove that if $n = 2$ in the previous case, then $\chi _B(\mathbf{D}_{F_0, F_1} ) \le 4$. It follows that the approximate measure chromatic number $\chi _M^{ap}(\mathbf{D} )$ does not exceed $2n + 1$ when the functions commute.

Autorzy

  • Connor Meehan7419 19th Ave.
    Burnaby, BC, Canada, V3N 1E2
    e-mail
  • Konstantinos Palamourdas10982 Roebling Ave. #439
    Los Angeles, CA 90024, U.S.A.
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek