Local coloring problems on smooth graphs
Tom 256 / 2022
Fundamenta Mathematicae 256 (2022), 333-339
MSC: 03E15, 05C15.
DOI: 10.4064/fm6-5-2021
Opublikowany online: 9 September 2021
Streszczenie
We construct a smooth locally finite Borel graph $G$ and a local coloring problem $\Pi $ such that $G$ has a coloring $V(G) \to \mathbb N $ that solves $\Pi $, but no such coloring can be Borel.