Zawartość tomu 261
-
Foundational aspects of uncountable measure theory: Gelfand duality, Riesz representation, canonical models, and canonical disintegration Fundamenta Mathematicae 261 (2023), 1-98 MSC: Primary 28A60; Secondary 46L05, 28A50. DOI: 10.4064/fm226-7-2022
-
Finer topologies on pointsets in Polish spaces Fundamenta Mathematicae 261 (2023), 99-131 MSC: Primary 03E15; Secondary 03E60. DOI: 10.4064/fm211-11-2022
-
Characterisations of ${\varSigma }$-pure-injectivity in triangulated categories and applications to endocoperfect objects Fundamenta Mathematicae 261 (2023), 133-155 MSC: Primary 18E45; Secondary 18G80, 03C60. DOI: 10.4064/fm50-12-2022
-
Infinite-dimensional Thurston theory and transcendental dynamics I: infinite-legged spiders Fundamenta Mathematicae 261 (2023), 157-200 MSC: Primary 37F20; Secondary 37F34, 37F10, 37F12. DOI: 10.4064/fm82-11-2022
-
On maps with continuous path lifting Fundamenta Mathematicae 261 (2023), 201-234 MSC: Primary 55R65; Secondary 55Q52, 57M10, 57M05. DOI: 10.4064/fm977-3-2023
-
Unboring ideals Fundamenta Mathematicae 261 (2023), 235-272 MSC: Primary 03E05; Secondary 03E15, 03E35, 26A03, 40A05, 54A20, 54H05. DOI: 10.4064/fm44-2-2023
-
Inverse limit slender groups Fundamenta Mathematicae 261 (2023), 273-295 MSC: Primary 54B25; Secondary 54B35, 54H20, 54C. DOI: 10.4064/fm118-12-2022
-
On the action of the ${\varSigma }(2,3,7)$ homology sphere group on its space of left-orders Fundamenta Mathematicae 261 (2023), 297-302 MSC: Primary 37C85; Secondary 57M60, 37B05, 37E05. DOI: 10.4064/fm196-1-2023