Zawartość tomu 262
-
Characterizing the existence of a Borel complete expansion Fundamenta Mathematicae 262 (2023), 1-35 MSC: Primary 03C50; Secondary 03E15. DOI: 10.4064/fm278-4-2023
-
Dimension of images and graphs of little Lipschitz functions Fundamenta Mathematicae 262 (2023), 37-70 MSC: Primary 26A16; Secondary 28A78. DOI: 10.4064/fm147-12-2022
-
Loeb extension and Loeb equivalence II Fundamenta Mathematicae 262 (2023), 71-83 MSC: Primary 28E05; Secondary 03H05. DOI: 10.4064/fm163-1-2023
-
Every CBER is smooth below the Carlson–Simpson generic partition Fundamenta Mathematicae 262 (2023), 85-103 MSC: Primary 03E15. DOI: 10.4064/fm255-12-2022
-
Non-absoluteness of Hjorth’s cardinal characterization Fundamenta Mathematicae 262 (2023), 105-128 MSC: Primary 03C55; Secondary 03E35, 03C75, 03C15, 03C35, 03E57. DOI: 10.4064/fm115-3-2023
-
The special tree number Fundamenta Mathematicae 262 (2023), 129-151 MSC: Primary 03E17; Secondary 03E35, 03E50. DOI: 10.4064/fm180-1-2023
-
Lipschitz functions on quasiconformal trees Fundamenta Mathematicae 262 (2023), 153-203 MSC: Primary 51F30; Secondary 30L05, 28A15, 28A78, 46B20. DOI: 10.4064/fm273-3-2023
-
A bounded sequence of bitransitive and capture Sierpiński curve Julia sets for 3-circle inversions Fundamenta Mathematicae 262 (2023), 205-220 MSC: Primary 37F10; Secondary 37F20, 37F45. DOI: 10.4064/fm166-4-2023
-
A dynamical approach to nonhomogeneous spectra Fundamenta Mathematicae 262 (2023), 221-233 MSC: Primary 37B20; Secondary 37B05, 05D10. DOI: 10.4064/fm191-5-2023
-
There is a P-measure in the random model Fundamenta Mathematicae 262 (2023), 235-257 MSC: Primary 03E05; Secondary 03E75, 03E35, 28E15. DOI: 10.4064/fm277-3-2023
-
Comparing cubical and globular directed paths Fundamenta Mathematicae 262 (2023), 259-286 MSC: Primary 55U35; Secondary 68Q85. DOI: 10.4064/fm219-3-2023
-
Almost everywhere convergence of nets of operators and weak type maximal inequalities Fundamenta Mathematicae 262 (2023), 287-304 MSC: Primary 42B25; Secondary 28A15, 47A35, 43A50. DOI: 10.4064/fm272-2-2023