JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Dimension of images and graphs of little Lipschitz functions

Tom 262 / 2023

Bruce Hanson, Pamela Pierce, Miroslav Zelený, Ondřej Zindulka Fundamenta Mathematicae 262 (2023), 37-70 MSC: Primary 26A16; Secondary 28A78. DOI: 10.4064/fm147-12-2022 Opublikowany online: 11 April 2023

Streszczenie

A mapping $f\colon X\to Y$ between metric spaces is termed little Lipschitz if the function ${\rm lip}\, f\colon X\to [0,\infty ]$, $${\rm lip}\, f(x)=\liminf_{r\to 0}\frac{{\rm diam}\,f(B(x,r))}{r},$$ is finite at every point. We prove that for each $s \gt 0$ the little Lipschitz mapping $f$ satisfies the inequality $$ \mathscr H^s(f(X))\leq \int _X({\rm lip}\, f)^s\,{\rm d}\mathscr P^s $$ as long as $\{{\rm lip}\, f=0\}$ is of $\sigma $-finite measure $\mathscr P^s$, where $\mathscr H^s$ and $\mathscr P^s$ denote the $s$-dimensional Hausdorff and packing measures, respectively. We derive a dimensional inequality for little Lipschitz mappings $$\dim _{\mathsf H} f(X)\leq \dim _{\mathsf H} f\leq \mathop{\overline {\rm dim}_{\mathsf P}} X$$ and we provide a few examples that show that these inequalities are the best possible.

Autorzy

  • Bruce HansonDepartment of Mathematics and Statistics
    St. Olaf College
    Northfield, MN 12344, USA
    e-mail
  • Pamela PierceDepartment of Mathematics
    and Computational Sciences
    The College of Wooster
    Wooster, OH 44691, USA
    e-mail
  • Miroslav ZelenýDepartment of Mathematical Analysis
    Faculty of Mathematics and Physics
    Charles University
    186 75 Praha 8, Czech Republic
    e-mail
  • Ondřej ZindulkaDepartment of Mathematics
    Faculty of Civil Engineering
    Czech Technical University
    160 00 Praha 6, Czech Republic
    http://mat.fsv.cvut.cz/zindulka
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek