JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Hausdorff dimension of metric spaces definable in o-minimal expansions of the real field

Tom 265 / 2024

Jana Maříková, Erik Walsberg Fundamenta Mathematicae 265 (2024), 197-214 MSC: Primary 03C64; Secondary 54E35, 28A75 DOI: 10.4064/fm170727-14-5 Opublikowany online: 17 June 2024

Streszczenie

Let $R$ be an o-minimal expansion of the real field and $(X,d)$ an $R$-definable metric space. We show that the Hausdorff dimension of $(X,d)$ is an $R$-definable function of its defining parameters, an element of the field of powers of $R$, and is equal to the packing dimension of $(X,d)$. The proof uses a basic topological dichotomy for definable metric spaces due to the second author, and the work of Shiota and the first author on measure theory over nonarchimedean o-minimal structures.

Autorzy

  • Jana MaříkováKurt Gödel Research Center for Mathematical Logic
    Universität Wien
    1090 Wien, Austria
    e-mail
  • Erik Walsberg4 Columbia
    Irvine, CA 92612, USA
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek