JEDNOSTKA NAUKOWA KATEGORII A+

Duality on vector-valued weighted harmonic Bergman spaces

Tom 118 / 1996

Salvador Pérez-Esteva Studia Mathematica 118 (1996), 37-47 DOI: 10.4064/sm-118-1-37-47

Streszczenie

We study the duals of the spaces $A^{pα}(X)$ of harmonic functions in the unit ball of $ℝ^n$ with values in a Banach space X, belonging to the Bochner $L^p$ space with weight $(1-|x|)^α$, denoted by $L^{pα}(X)$. For 0 < α < p-1 we construct continuous projections onto $A^{pα}(X)$ providing a decomposition $L^{pα}(X) = A^{pα}(X) + M^{pα}(X)$. We discuss the conditions on p, α and X for which $A^{pα}(X)* = A^{qα}(X*)$ and $M^{pα}(X)* = M^{qα}(X*)$, 1/p+1/q = 1. The last equality is equivalent to the Radon-Nikodým property of X*.

Autorzy

  • Salvador Pérez-Esteva

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek