A note on the Ehrhard inequality
Tom 118 / 1996
Studia Mathematica 118 (1996), 169-174
DOI: 10.4064/sm-118-2-169-174
Streszczenie
We prove that for λ ∈ [0,1] and A, B two Borel sets in $ℝ^n$ with A convex, $Φ^{-1}(γ_n(λA + (1-λ)B)) ≥ λΦ^{-1}(γ_n(A)) + (1-λ)Φ^{-1}(γ_n(B))$, where $γ_n$ is the canonical gaussian measure in $ℝ^n$ and $Φ^{-1}$ is the inverse of the gaussian distribution function.