On approach regions for the conjugate Poisson integral and singular integrals
Tom 120 / 1996
Studia Mathematica 120 (1996), 169-182
DOI: 10.4064/sm-120-2-169-182
Streszczenie
Let ũ denote the conjugate Poisson integral of a function . We give conditions on a region Ω so that lim_{(v,ε)→(0,0)}_{(v,ε)∈Ω} ũ(x+v,ε) = Hf(x), the Hilbert transform of f at x, for a.e. x. We also consider more general Calderón-Zygmund singular integrals and give conditions on a set Ω so that sup_{(v,r)∈Ω} |ʃ_{|t|>r} k(x+v-t)f(t)dt| is a bounded operator on L^p, 1 < p < ∞, and is weak (1,1).