Initial value problem for the time dependent Schrödinger equation on the Heisenberg group
Tom 122 / 1997
Streszczenie
Let L be the full laplacian on the Heisenberg group of arbitrary dimension n. Then for f ∈ L^{2}(ℍ^{n}) such that (I-L)^{s/2}f ∈ L^{2}(ℍ^{n}), s > 3/4, for a ϕ ∈ C_{c}(ℍ^{n}) we have ʃ_{ℍ^{n}} |ϕ(x)| sup_{0 < t≤1} |e^{(√-1)tL}f(x)|^{2} dx ≤ C_{ϕ} ∥f∥_{W^{s}}^{2}. On the other hand, the above maximal estimate fails for s < 1/4. If Δ is the sublaplacian on the Heisenberg group ℍ^{n}, then for every s < 1 there exists a sequence f_{n} ∈ L^{2}(ℍ^{n}) and C_{n} > 0 such that (I-L)^{s/2} f_{n} ∈ L^{2}(ℍ^{n}) and for a ϕ ∈ C_{c}(ℍ^{n}) we have ʃ_{ℍ^{n}} |ϕ(x)| sup_{0 < t≤1} |e^{(√-1)tΔ} f_{n}(x)|^{2} dx ≥ C_{n} ∥f_{n}∥_{W^{s}}^{2}, lim_{n→∞}C_{n} = +∞.