JEDNOSTKA NAUKOWA KATEGORII A+

Tauberian theorems for vector-valued Fourier and Laplace transforms

Tom 128 / 1998

Ralph Chill Studia Mathematica 128 (1998), 55-69 DOI: 10.4064/sm-128-1-55-69

Streszczenie

Let X be a Banach space and $f ∈ L^1_loc(ℝ;X)$ be absolutely regular (i.e. integrable when divided by some polynomial). If the distributional Fourier transform of f is locally integrable then f converges to 0 at infinity in some sense to be made precise. From this result we deduce some Tauberian theorems for Fourier and Laplace transforms, which can be improved if the underlying Banach space has the analytic Radon-Nikodym property.

Autorzy

  • Ralph Chill

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek