Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

JEDNOSTKA NAUKOWA KATEGORII A+

Selfsimilar profiles in large time asymptotics of solutions to damped wave equations

Tom 143 / 2000

Grzegorz Karch Studia Mathematica 143 (2000), 175-197 DOI: 10.4064/sm-143-2-175-197

Streszczenie

Large time behavior of solutions to the generalized damped wave equation for (x,t)∈ ℝ^n × [0,∞) is studied. First, we consider the linear nonhomogeneous equation, i.e. with F = F(x,t) independent of u. We impose conditions on the operators A and B, on F, as well as on the initial data which lead to the selfsimilar large time asymptotics of solutions. Next, this abstract result is applied to the equation where Au_t = u_t, Bu = -Δu, and the nonlinear term is either |u_t|^{q-1}u_t or |u|^{α-1}u. In this case, the asymptotic profile of solutions is given by a multiple of the Gauss-Weierstrass kernel. Our method of proof does not require the smallness assumption on the initial conditions.

Autorzy

  • Grzegorz Karch

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek