Some results on packing in Orlicz sequence spaces
Tom 147 / 2001
                    
                    
                        Studia Mathematica 147 (2001), 73-88                    
                                        
                        MSC: 46E30, 46A45.                    
                                        
                        DOI: 10.4064/sm147-1-6                    
                                    
                                                Streszczenie
We present monotonicity theorems for index functions of $N$-fuctions, and obtain formulas for exact values of packing constants. In particular, we show that the Orlicz sequence space $l^{(N)}$ generated by the $N$-function $N(v)=(1+|v|)\mathop {\rm ln}\nolimits (1+|v|)-|v|$ with Luxemburg norm has the Kottman constant $K(l^{(N)})={N^{-1}(1)}/{N^{-1}({1}/{2})}$, which answers M. M. Rao and Z. D. Ren's [8] problem.
 
             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                         
                                                            