JEDNOSTKA NAUKOWA KATEGORII A+

The Hausdorff operators on the real Hardy spaces $H^p({\Bbb R})$

Tom 148 / 2001

Yuichi Kanjin Studia Mathematica 148 (2001), 37-45 MSC: Primary 47B38; Secondary 42B30. DOI: 10.4064/sm148-1-4

Streszczenie

We prove that the Hausdorff operator generated by a function $\phi $ is bounded on the real Hardy space $H^p({\mathbb R})$, $0 < p \le 1,$ if the Fourier transform $\widehat {\phi }$ of $\phi $ satisfies certain smoothness conditions. As a special case, we obtain the boundedness of the Ces\accent18 aro operator of order $\alpha $ on $H^p({\mathbb R})$, $2/(2\alpha +1) < p \le 1$. Our proof is based on the atomic decomposition and molecular characterization of $H^p({\mathbb R})$.

Autorzy

  • Yuichi KanjinDepartment of Mathematics
    General Education Hall
    Kanazawa University
    Kanazawa 920-1192, Japan
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek