JEDNOSTKA NAUKOWA KATEGORII A+

Curved thin domains and parabolic equations

Tom 151 / 2002

M. Prizzi, M. Rinaldi, K. P. Rybakowski Studia Mathematica 151 (2002), 109-140 MSC: Primary 35K57, 35B25, 35B41; Secondary 35P15, 53B21. DOI: 10.4064/sm151-2-2

Streszczenie

Consider the family $$ \eqalign{ &u_t = {\mit\Delta} u + G(u),\ \quad t>0,\, x\in {\mit\Omega}_\varepsilon,\cr &\partial_{\nu_\varepsilon}u= 0,\ \quad t>0,\, x\in \partial {\mit\Omega}_\varepsilon,} \tag*{$(E_\varepsilon)$}$$ of semilinear Neumann boundary value problems, where, for $\varepsilon>0$ small, the set ${\mit\Omega}_\varepsilon$ is a thin domain in $\mathbb R^l$, possibly with holes, which collapses, as $\varepsilon\to0^+$, onto a (curved) $k$-dimensional submanifold of $\mathbb R^l$. If $G$ is dissipative, then equation $(E_\varepsilon)$ has a global attractor ${\mathcal A}_\varepsilon$. We identify a “limit” equation for the family $(E_\varepsilon)$, prove convergence of trajectories and establish an upper semicontinuity result for the family ${\mathcal A}_\varepsilon$ as $\varepsilon\to0^+$.

Autorzy

  • M. PrizziDipartimento di Scienze Matematiche
    Università degli Studi di Trieste
    Via Valerio, 12/b
    34100 Trieste, Italy
    e-mail
  • M. RinaldiDISCAFF
    Viale Ferrucci, 33
    28100 Novara, Italy
    e-mail
  • K. P. RybakowskiFachbereich Mathematik
    Universität Rostock
    Universitätsplatz 1
    18055 Rostock, Germany
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek