Une inégalité maximale sous-gaussienne sur les espaces de tentes
Tom 155 / 2003
Studia Mathematica 155 (2003), 23-36
MSC: 42B25, 42B30, 31B25.
DOI: 10.4064/sm155-1-2
Streszczenie
We introduce a maximal function (denoted by $\overline \pi $) on the tent spaces $T^p({\mathbb R}^{n+1}_+)$, $0< p<\infty $, of Coifman, Meyer and Stein [8]. We prove a good-$\lambda $ estimate of subgaussian type for this maximal function and for the square function of tent spaces, leading to integrability results for $\overline \pi $. We deduce convergence results for the singular integral defining $\pi $.