JEDNOSTKA NAUKOWA KATEGORII A+

Operator Figà-Talamanca–Herz algebras

Tom 155 / 2003

Volker Runde Studia Mathematica 155 (2003), 153-170 MSC: Primary 47L25; Secondary 43A15, 43A30, 46B70, 46J99, 46L07. DOI: 10.4064/sm155-2-5

Streszczenie

Let $G$ be a locally compact group. We use the canonical operator space structure on the spaces $L^p(G)$ for $p \in [1,\infty]$ introduced by G. Pisier to define operator space analogues $OA_p(G)$ of the classical Figà-Talamanca–Herz algebras $A_p(G)$. If $p \in (1,\infty)$ is arbitrary, then $A_p(G) \subset OA_p(G)$ and the inclusion is a contraction; if $p = 2$, then $OA_2(G) \cong A(G)$ as Banach spaces, but not necessarily as operator spaces. We show that $OA_p(G)$ is a completely contractive Banach algebra for each $p \in (1,\infty)$, and that $OA_q(G) \subset OA_p(G)$ completely contractively for amenable $G$ if $1 < p \leq q \leq 2$ or $2 \leq q \leq p < \infty$. Finally, we characterize the amenability of $G$ through the existence of a bounded approximate identity in $OA_p(G)$ for one (or equivalently for all) $p \in (1,\infty)$.

Autorzy

  • Volker RundeDepartment of Mathematical and Statistical Sciences
    University of Alberta
    Edmonton, Alberta
    Canada, T6G 2G1
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek