JEDNOSTKA NAUKOWA KATEGORII A+

On locally convex extension of $H^{\infty }$ in the unit ball and continuity of the Bergman projection

Tom 156 / 2003

M. Jasiczak Studia Mathematica 156 (2003), 261-275 MSC: 32A25, 32A36, 32A70, 46A13, 46E10. DOI: 10.4064/sm156-3-4

Streszczenie

We define locally convex spaces $LW$ and $HW$ consisting of measurable and holomorphic functions in the unit ball, respectively, with the topology given by a family of weighted-sup seminorms. We prove that the Bergman projection is a continuous map from $LW$ onto $HW$. These are the smallest spaces having this property. We investigate the topological and algebraic properties of $HW$.

Autorzy

  • M. JasiczakFaculty of Mathematics and Computer Science
    Adam Mickiewicz University
    Umultowska 87
    61-614 Poznań, Poland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek