Geometric characterization for affine mappings and Teichmüller mappings
Tom 157 / 2003
Studia Mathematica 157 (2003), 71-82
MSC: 30C62, 30C55, 30F60.
DOI: 10.4064/sm157-1-6
Streszczenie
We characterize affine mappings on the unit disk and on rectangles by module conditions. The main result generalizes the classic Schwarz lemma. As an application, we give a sufficient condition for a $K$-quasiconformal mapping on a Riemann surface to be a Teichmüller mapping.