JEDNOSTKA NAUKOWA KATEGORII A+

Stochastic approximation properties in Banach spaces

Tom 159 / 2003

V. P. Fonf, W. B. Johnson, G. Pisier, D. Preiss Studia Mathematica 159 (2003), 103-119 MSC: Primary 46A35, 46B25, 46E30, 60B11. DOI: 10.4064/sm159-1-5

Streszczenie

We show that a Banach space $X$ has the stochastic approximation property iff it has the stochasic basis property, and these properties are equivalent to the approximation property if $X$ has nontrivial type. If for every Radon probability on $X$, there is an operator from an $L_p$ space into $X$ whose range has probability one, then $X$ is a quotient of an $L_p$ space. This extends a theorem of Sato's which dealt with the case $p=2$. In any infinite-dimensional Banach space $X$ there is a compact set $K$ so that for any Radon probability on $X$ there is an operator range of probability one that does not contain $K$.

Autorzy

  • V. P. FonfBen-Gurion University of the Negev
    P.O. Box 653
    Beer-Sheva 84105, Israel
    e-mail
  • W. B. JohnsonDepartment of Mathematics
    Texas A&M University
    Department of Mathematics
    College Station, TX 77843, U.S.A.
    e-mail
  • G. PisierDepartment of Mathematics
    Texas A&M University
    College Station, TX 77843, U.S.A.
    and
    Equipe d'Analyse, Case 186
    Université Paris VI
    75252 Paris, Cedex 05, France
    e-mail
    e-mail
  • D. PreissDepartment of Mathematics
    University College London
    London, Great Britain
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek