JEDNOSTKA NAUKOWA KATEGORII A+

Volumetric invariants and operators on random families of Banach spaces

Tom 159 / 2003

Piotr Mankiewicz, Nicole Tomczak-Jaegermann Studia Mathematica 159 (2003), 315-335 MSC: Primary 46B20. DOI: 10.4064/sm159-2-10

Streszczenie

The geometry of random projections of centrally symmetric convex bodies in ${ \mathbb R}^N$ is studied. It is shown that if for such a body $K$ the Euclidean ball $B_2^N$ is the ellipsoid of minimal volume containing it and a random $n$-dimensional projection $B=P_H(K)$ is “far” from $P_H(B_2^N)$ then the (random) body $B$ is as “rigid” as its “distance” to $P_H(B_2^N)$ permits. The result holds for the full range of dimensions $1 \le n \le \lambda N$, for arbitrary $\lambda \in (0,1)$.

Autorzy

  • Piotr MankiewiczInstitute of Mathematics
    Polish Academy of Sciences
    /Sniadeckich 8
    00-956 Warszawa, Poland
    e-mail
  • Nicole Tomczak-JaegermannDepartment of Mathematical and Statistical Sciences
    University of Alberta
    Edmonton, Alberta
    Canada T6G 2G1
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek