JEDNOSTKA NAUKOWA KATEGORII A+

On the compact approximation property

Tom 160 / 2004

Vegard Lima, Åsvald Lima, Olav Nygaard Studia Mathematica 160 (2004), 185-200 MSC: Primary 46B20, 46B28, 47L05. DOI: 10.4064/sm160-2-6

Streszczenie

We show that a Banach space $X$ has the compact approximation property if and only if for every Banach space $Y$ and every weakly compact operator $T : Y \rightarrow X$, the space $$ \mathfrak{E} = \{ S \circ T : S\ \hbox{compact operator on}\ X \} $$ is an ideal in $\mathfrak{F} = \mathop{\rm span}(\mathfrak{E},\{T\})$ if and only if for every Banach space $Y$ and every weakly compact operator $T: Y \rightarrow X$, there is a net $(S_\gamma)$ of compact operators on $X$ such that $\sup_\gamma \|S_\gamma T\| \le \|T\|$ and $S_\gamma \rightarrow I_X$ in the strong operator topology. Similar results for dual spaces are also proved.

Autorzy

  • Vegard LimaDepartment of Mathematics
    Agder University College
    Serviceboks 422
    4604 Kristiansand, Norway
    e-mail
  • Åsvald LimaDepartment of Mathematics
    Agder University College
    Serviceboks 422
    4604 Kristiansand, Norway
    e-mail
  • Olav NygaardDepartment of Mathematics
    Agder University College
    Serviceboks 422
    4604 Kristiansand, Norway
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek