Interpolation by bivariate polynomials based on Radon projections
Tom 162 / 2004
Studia Mathematica 162 (2004), 141-160
MSC: 41A05, 41A63.
DOI: 10.4064/sm162-2-3
Streszczenie
For any given set of angles $\theta _0 < \ldots < \theta _n$ in $[0, \pi )$, we show that a set of ${n+2 \choose 2}$ Radon projections, consisting of $k$ parallel $X$-ray beams in each direction $\theta _k$, $k=0, \ldots , n$, determines uniquely algebraic polynomials of degree $n$ in two variables.