JEDNOSTKA NAUKOWA KATEGORII A+

Uniform spectral radius and compact Gelfand transform

Tom 172 / 2006

Alexandru Aleman, Anders Dahlner Studia Mathematica 172 (2006), 25-46 MSC: Primary 46J05; Secondary 43A15. DOI: 10.4064/sm172-1-2

Streszczenie

We consider the quantization of inversion in commutative $p$-normed quasi-Banach algebras with unit. The standard questions considered for such an algebra $A$ with unit $e$ and Gelfand transform $x\mapsto\widehat{x}$ are: (i) Is $K_\nu=\sup\{\|(e-x)^{-1}\|_p:x\in A, \|x\|_p\leq 1,\, \max|\widehat{x}|\leq\nu\}$ bounded, where $\nu\in(0,1)$? (ii) For which $\delta\in(0,1)$ is $C_\delta=\sup\{\|x^{-1}\|_p:x\in A,\, \|x\|_p\leq1,\, \min|\widehat{x}|\geq\delta\}$ bounded? Both questions are related to a “uniform spectral radius” of the algebra, $r_\infty(A)$, introduced by Björk. Question (i) has an affirmative answer if and only if $r_\infty(A)< 1$, and this result is extended to more general nonlinear extremal problems of this type. Question (ii) is more difficult, but it can also be related to the uniform spectral radius. For algebras with compact Gelfand transform we prove that the answer is “yes” for all $\delta\in(0,1)$ if and only if $r_\infty(A)=0$. Finally, we specialize to semisimple Beurling type algebras $\ell^p_\omega ({\cal D})$, where $0< p< 1$ and ${\cal D}={\mathbb N}$ or ${\cal D}={\mathbb Z}$. We show that the number $r_\infty(\ell^p_\omega ({\cal D}))$ can be effectively computed in terms of the underlying weight. In particular, this solves questions (i) and (ii) for many of these algebras. We also construct weights such that the corresponding Beurling algebra has a compact Gelfand transform, but the uniform spectral radius equals an arbitrary given number in $(0,1]$.

Autorzy

  • Alexandru AlemanCentre for Mathematical Sciences
    Mathematics (Faculty of Science)
    University of Lund, Box 118
    SE-221 00 Lund, Sweden
    e-mail
  • Anders DahlnerCentre for Mathematical Sciences
    Mathematics (Faculty of Science)
    University of Lund, Box 118
    SE-221 00 Lund, Sweden
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek