JEDNOSTKA NAUKOWA KATEGORII A+

Backward extensions of hyperexpansive operators

Tom 173 / 2006

Zenon J. Jabłoński, Il Bong Jung, Jan Stochel Studia Mathematica 173 (2006), 233-257 MSC: Primary 47B20, 47B37; Secondary 44A60. DOI: 10.4064/sm173-3-2

Streszczenie

The concept of $k$-step full backward extension for subnormal operators is adapted to the context of completely hyperexpansive operators. The question of existence of $k$-step full backward extension is solved within this class of operators with the help of an operator version of the Levy–Khinchin formula. Some new phenomena in comparison with subnormal operators are found and related classes of operators are discussed as well.

Autorzy

  • Zenon J. JabłońskiInstitute of Mathematics
    Jagiellonian University
    Reymonta 4
    30-059 Kraków, Poland
    e-mail
  • Il Bong JungDepartment of Mathematics
    College of Natural Sciences
    Kyungpook National University
    Daegu 702-701 Korea
    e-mail
  • Jan StochelInstitute of Mathematics
    Jagiellonian University
    Reymonta 4
    30-059 Kraków, Poland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek