JEDNOSTKA NAUKOWA KATEGORII A+

Some remarks on Toeplitz multipliers and Hankel matrices}

Tom 175 / 2006

Aleksander Pe/lczy/nski, Fyodor Sukochev Studia Mathematica 175 (2006), 175-204 MSC: 47B35, 47B49, 15A60, 47B10. DOI: 10.4064/sm175-2-5

Streszczenie

Consider the set of all Toeplitz–Schur multipliers sending every upper triangular matrix from the trace class into a matrix with absolutely summable entries. We show that this set admits a description completely analogous to that of the set of all Fourier multipliers from $H_1$ into $\ell_1$. We characterize the set of all Schur multipliers sending matrices representing bounded operators on $\ell_2$ into matrices with absolutely summable entries. Next, we present a result (due to G. Pisier) that the upper triangular parts of such Schur multipliers are precisely the Schur multipliers sending upper triangular parts of matrices representing bounded linear operators on $\ell_2$ into matrices with absolutely summable entries. Finally, we complement solutions of Mazur's Problems 8 and 88 in the Scottish Book concerning Hankel matrices.

Autorzy

  • Aleksander Pe/lczy/nskiInstitute of Mathematics
    Polish Academy of Sciences
    /Sniadeckich 8
    00-956 Warszawa, Poland
    e-mail
  • Fyodor SukochevSchool of Informatics and Engineering
    Flinders University of South Australia
    5042 Bedford Park, Australia
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek