Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

JEDNOSTKA NAUKOWA KATEGORII A+

Some remarks on Toeplitz multipliers and Hankel matrices}

Tom 175 / 2006

Aleksander Pe/lczy/nski, Fyodor Sukochev Studia Mathematica 175 (2006), 175-204 MSC: 47B35, 47B49, 15A60, 47B10. DOI: 10.4064/sm175-2-5

Streszczenie

Consider the set of all Toeplitz–Schur multipliers sending every upper triangular matrix from the trace class into a matrix with absolutely summable entries. We show that this set admits a description completely analogous to that of the set of all Fourier multipliers from  into \ell_1. We characterize the set of all Schur multipliers sending matrices representing bounded operators on \ell_2 into matrices with absolutely summable entries. Next, we present a result (due to G. Pisier) that the upper triangular parts of such Schur multipliers are precisely the Schur multipliers sending upper triangular parts of matrices representing bounded linear operators on \ell_2 into matrices with absolutely summable entries. Finally, we complement solutions of Mazur's Problems 8 and 88 in the Scottish Book concerning Hankel matrices.

Autorzy

  • Aleksander Pe/lczy/nskiInstitute of Mathematics
    Polish Academy of Sciences
    /Sniadeckich 8
    00-956 Warszawa, Poland
    e-mail
  • Fyodor SukochevSchool of Informatics and Engineering
    Flinders University of South Australia
    5042 Bedford Park, Australia
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek