JEDNOSTKA NAUKOWA KATEGORII A+

An $L^q(L^2)$-theory of the generalized Stokes resolvent system in infinite cylinders

Tom 178 / 2007

Reinhard Farwig, Myong-Hwan Ri Studia Mathematica 178 (2007), 197-216 MSC: 35Q30, 76D07, 42A45, 46E40. DOI: 10.4064/sm178-3-1

Streszczenie

Estimates of the generalized Stokes resolvent system, i.e. with prescribed divergence, in an infinite cylinder ${\mit\Omega}={\mit\Sigma}\times\mathbb R$ with ${\mit\Sigma}\subset \mathbb R^{n-1}$, a bounded domain of class $C^{1,1}$, are obtained in the space $L^q(\mathbb R;L^2({\mit\Sigma}))$, $q\in (1,\infty)$. As a preparation, spectral decompositions of vector-valued homogeneous Sobolev spaces are studied. The main theorem is proved using the techniques of Schauder decompositions, operator-valued multiplier functions and $R$-boundedness of operator families.

Autorzy

  • Reinhard FarwigDepartment of Mathematics
    Darmstadt University of Technology
    64289 Darmstadt, Germany
    e-mail
  • Myong-Hwan RiInstitute of Mathematics
    Academy of Sciences
    Pyongyang, DPR Korea
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek