JEDNOSTKA NAUKOWA KATEGORII A+

Jacobi decomposition of weighted Triebel–Lizorkin and Besov spaces

Tom 186 / 2008

George Kyriazis, Pencho Petrushev, Yuan Xu Studia Mathematica 186 (2008), 161-202 MSC: 42A38, 42B08, 42B15. DOI: 10.4064/sm186-2-3

Streszczenie

The Littlewood–Paley theory is extended to weighted spaces of distributions on $[-1,1]$ with Jacobi weights $w(t)=(1-t)^\alpha(1+t)^\beta.$ Almost exponentially localized polynomial elements (needlets) $\{\varphi_\xi\}$, $\{\psi_\xi\}$ are constructed and, in complete analogy with the classical case on $\mathbb R^n$, it is shown that weighted Triebel–Lizorkin and Besov spaces can be characterized by the size of the needlet coefficients $\{\langle f,\varphi_\xi\rangle\}$ in respective sequence spaces.

Autorzy

  • George KyriazisDepartment of Mathematics and Statistics
    University of Cyprus
    1678 Nicosia, Cyprus
    e-mail
  • Pencho PetrushevDepartment of Mathematics
    University of South Carolina
    Columbia, SC 29208, U.S.A.
    and
    Institute of Mathematics and Informatics
    Bulgarian Academy of Sciences
    e-mail
  • Yuan XuDepartment of Mathematics
    University of Oregon
    Eugene, OR 97403, U.S.A.
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek