JEDNOSTKA NAUKOWA KATEGORII A+

Fredholm spectrum and growth of cohomology groups

Tom 186 / 2008

Jörg Eschmeier Studia Mathematica 186 (2008), 237-249 MSC: Primary 47A13; Secondary 47A53, 13D40, 32C35. DOI: 10.4064/sm186-3-3

Streszczenie

Let $T \in L(E)^n$ be a commuting tuple of bounded linear operators on a complex Banach space $E$ and let $\sigma_{\rm F}(T) = \sigma(T) \setminus \sigma_{\rm e}(T)$ be the non-essential spectrum of $T$. We show that, for each connected component $M$ of the manifold ${\rm Reg}(\sigma_{\rm F}(T))$ of all smooth points of $\sigma_{\rm F}(T)$, there is a number $p \in \{0, \ldots , n \}$ such that, for each point $z \in M$, the dimensions of the cohomology groups $H^p ( (z - T)^k,E )$ grow at least like the sequence $(k^d)_{k \geq 1}$ with $d = \dim M.$

Autorzy

  • Jörg EschmeierFachrichtung Mathematik
    Universität des Saarlandes
    Postfach 15 11 50
    D-66041 Saarbrücken, Germany
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek