Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

JEDNOSTKA NAUKOWA KATEGORII A+

Sublinear eigenvalue problems on compact Riemannian manifolds with applications in Emden–Fowler equations

Tom 191 / 2009

Alexandru Kristály, Vicenţiu Rădulescu Studia Mathematica 191 (2009), 237-246 MSC: 58J05, 35J60. DOI: 10.4064/sm191-3-5

Streszczenie

Let be a compact Riemannian manifold without boundary, with \dim M\geq 3, and f:\mathbb R \to \mathbb R a continuous function which is {sublinear} at infinity. By various variational approaches, existence of multiple solutions of the eigenvalue problem -{\mit\Delta}_{g} \omega+\alpha (\sigma) \omega= \tilde K(\lambda,\sigma)f(\omega),\ \quad \sigma\in M,\, \omega\in H_1^2(M), is established for certain eigenvalues \lambda>0, depending on further properties of f and on explicit forms of the function \tilde K. Here, {\mit\Delta}_{g} stands for the Laplace–Beltrami operator on (M,g), and \alpha, \tilde K are smooth positive functions. These multiplicity results are then applied to solve Emden–Fowler equations which involve sublinear terms at infinity.

Autorzy

  • Alexandru KristályDepartment of Economics
    University of Babeş-Bolyai
    400591 Cluj-Napoca, Romania
    e-mail
  • Vicenţiu RădulescuInstitute of Mathematics “Simion Stoilow"
    of the Romanian Academy
    014700 Bucureşti, Romania
    and
    Department of Mathematics
    University of Craiova
    200585 Craiova, Romania
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek