JEDNOSTKA NAUKOWA KATEGORII A+

Notes on automorphisms of ultrapowers of II$_1$ factors

Tom 195 / 2009

David Sherman Studia Mathematica 195 (2009), 201-217 MSC: Primary 46M07; Secondary 46L10, 46L40. DOI: 10.4064/sm195-3-1

Streszczenie

In functional analysis, approximative properties of an object become precise in its ultrapower. We discuss this idea and its consequences for automorphisms of $ \hbox {II}_1$ factors. Here are some sample results: (1) an automorphism is approximately inner if and only if its ultrapower is $\aleph _0$-locally inner; (2) the ultrapower of an outer automorphism is always outer; (3) for unital $^{*}$-homomorphisms from a separable nuclear C$^*$-algebra into an ultrapower of a $ \hbox {II}_1$ factor, equality of the induced traces implies unitary equivalence. All statements are proved using operator-algebraic techniques, but in the last section of the paper we indicate how the underlying principle is related to theorems of Henson's positive bounded logic.

Autorzy

  • David ShermanDepartment of Mathematics
    University of Virginia
    P.O. Box 400137
    Charlottesville, VA 22904, U.S.A.
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek