JEDNOSTKA NAUKOWA KATEGORII A+

Schauder bases and the bounded approximation property in separable Banach spaces

Tom 196 / 2010

Jorge Mujica, Daniela M. Vieira Studia Mathematica 196 (2010), 1-12 MSC: Primary 46B15, 46B28, 46G20. DOI: 10.4064/sm196-1-1

Streszczenie

Let $E$ be a separable Banach space with the $\lambda$-bounded approximation property. We show that for each $\epsilon >0$ there is a Banach space $F$ with a Schauder basis such that $E$ is isometrically isomorphic to a $1$-complemented subspace of $F$ and, moreover, the sequence $(T_{n})$ of canonical projections in $F$ has the properties $$ \sup_{n \in \mathbb{N}} \|T_{n}\| \le \lambda+ \epsilon \quad\hbox{and}\quad \limsup_{n \rightarrow \infty} \|T_{n}\| \le \lambda. $$ This is a sharp quantitative version of a classical result obtained independently by Pełczyński and by Johnson, Rosenthal and Zippin.

Autorzy

  • Jorge MujicaIMECC-UNICAMP
    Caixa Postal 6065
    13083-970 Campinas, SP, Brazil
    e-mail
  • Daniela M. VieiraIMECC-UNICAMP
    Caixa Postal 6065
    13083-970 Campinas, SP, Brazil
    and
    Instituto de Matemática e Estatística
    Universidade de São Paulo
    Caixa Postal 66281
    05315-970 São Paulo, SP, Brazil
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek