JEDNOSTKA NAUKOWA KATEGORII A+

The power boundedness and resolvent conditions for functions of the classical Volterra operator

Tom 196 / 2010

Yuri Lyubich Studia Mathematica 196 (2010), 41-63 MSC: 47A10, 47A35, 47G10. DOI: 10.4064/sm196-1-4

Streszczenie

Let $\phi (z)$ be an analytic function in a disk $|z| < \rho $ (in particular, a polynomial) such that $\phi (0)=1$, $\phi (z)\not \equiv 1$. Let $V$ be the operator of integration in $L_p(0,1)$, $1\leq p\leq \infty $. Then $\phi (V)$ is power bounded if and only if $\phi '(0)<0$ and $p=2$. In this case some explicit upper bounds are given for the norms of $\phi (V)^n$ and subsequent differences between the powers. It is shown that $\phi (V)$ never satisfies the Ritt condition but the Kreiss condition is satisfied if and only if $\phi '(0)<0$, at least in the polynomial case.

Autorzy

  • Yuri LyubichInstitute of Mathematics
    Polish Academy of Sciences
    Warszawa, Poland
    and
    Technion, Haifa, Israel
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek