Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

JEDNOSTKA NAUKOWA KATEGORII A+

Quasiconformal mappings and exponentially integrable functions

Tom 203 / 2011

Fernando Farroni, Raffaella Giova Studia Mathematica 203 (2011), 195-203 MSC: Primary 30C62, 46E30; Secondary 47B33. DOI: 10.4064/sm203-2-5

Streszczenie

We prove that a -quasiconformal mapping f:\mathbb R^2\rightarrow\mathbb R^2 which maps the unit disk \mathbb D onto itself preserves the space {\rm EXP}(\mathbb D) of exponentially integrable functions over \mathbb D, in the sense that u \in {\rm EXP}(\mathbb D) if and only if u \circ f^{-1} \in {\rm EXP}(\mathbb D). Moreover, if f is assumed to be conformal outside the unit disk and principal, we provide the estimate \frac 1{1+K\log K}\le \frac{\|u \circ f^{-1}\|_{{\rm EXP}(\mathbb D)}}{\|u\|_{\rm{EXP}(\mathbb D)} } \le 1+K\log K for every u \in {\rm EXP}(\mathbb{D}). Similarly, we consider the distance from L^\infty in \rm EXP and we prove that if f:{\mit\Omega} \rightarrow {\mit\Omega}^\prime is a K-quasiconformal mapping and G \subset \subset \mit\Omega, then \frac 1 K \le \frac{{\rm dist}_{{\rm EXP}(f(G))} (u \circ f^{-1},L^\infty(f(G)))}{ {\rm dist}_{{\rm EXP}(f(G))} (u,L^\infty(G ))}\le K for every u \in{\rm EXP}(\mathbb G). We also prove that the last estimate is sharp, in the sense that there exist a quasiconformal mapping f:\mathbb D \rightarrow \mathbb D, a domain G \subset \subset \mathbb D and a function u\in {\rm EXP}(G) such that {\rm dist}_{{\rm EXP}(f(G))} (u \circ f^{-1},L^\infty(f(G)))= K\,{\rm dist}_{{\rm EXP}(f(G))} (u,L^\infty(G )).

Autorzy

  • Fernando FarroniDipartimento di Matematica e Applicazioni “R. Caccioppoli”
    Università degli Studi di Napoli Federico II
    Via Cintia
    80126 Napoli, Italy
    e-mail
  • Raffaella GiovaDipartimento di Statistica e Matematica
    per la Ricerca Economica
    Università degli Studi di Napoli Parthenope
    Via Medina, 40
    80133 Napoli, Italy
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek