Quasiconformal mappings and exponentially integrable functions
Tom 203 / 2011
Streszczenie
We prove that a -quasiconformal mapping f:\mathbb R^2\rightarrow\mathbb R^2 which maps the unit disk \mathbb D onto itself preserves the space {\rm EXP}(\mathbb D) of exponentially integrable functions over \mathbb D, in the sense that u \in {\rm EXP}(\mathbb D) if and only if u \circ f^{-1} \in {\rm EXP}(\mathbb D). Moreover, if f is assumed to be conformal outside the unit disk and principal, we provide the estimate \frac 1{1+K\log K}\le \frac{\|u \circ f^{-1}\|_{{\rm EXP}(\mathbb D)}}{\|u\|_{\rm{EXP}(\mathbb D)} } \le 1+K\log K for every u \in {\rm EXP}(\mathbb{D}). Similarly, we consider the distance from L^\infty in \rm EXP and we prove that if f:{\mit\Omega} \rightarrow {\mit\Omega}^\prime is a K-quasiconformal mapping and G \subset \subset \mit\Omega, then \frac 1 K \le \frac{{\rm dist}_{{\rm EXP}(f(G))} (u \circ f^{-1},L^\infty(f(G)))}{ {\rm dist}_{{\rm EXP}(f(G))} (u,L^\infty(G ))}\le K for every u \in{\rm EXP}(\mathbb G). We also prove that the last estimate is sharp, in the sense that there exist a quasiconformal mapping f:\mathbb D \rightarrow \mathbb D, a domain G \subset \subset \mathbb D and a function u\in {\rm EXP}(G) such that {\rm dist}_{{\rm EXP}(f(G))} (u \circ f^{-1},L^\infty(f(G)))= K\,{\rm dist}_{{\rm EXP}(f(G))} (u,L^\infty(G )).